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Quantum localization of classical diffusion of energy for a mesoscopic metallic ring in the presence of a
microwave field is studied. The condition for the importance of resonances between the electronic motion in
the ring and the alternating field is considered. It is shown that this model is analogous to the one-dimensional
Anderson model under certain conditions. The conditions, as well as an expression for the localization length,
are obtained. A method that is based on the photonic states concept, that is valid for this case when the level
width is much less than energy spacing between quasiresonant levels, is used.

PACS number(s): 05.45.+b, 72.15.Rn

The problem of quantum localization of classical chaotic
motion [1-3] is one of the central problems of quantum
chaos. This phenomenon, also called dynamical localization,
takes place in systems where a resonant interaction between
degrees of freedom is essential and cannot be considered
perturbatively.

Recently this class of problems became very relevant for
the investigation of electronic motion in mesoscopic sys-
tems. The main interest in this subject is due to consideration
of the localization problem in energy space of adiabatic lev-
els for both Bloch electrons in one-dimensional systems sub-
ject to a uniform electric field [4—6] and an electron in a ring
in the presence of a time dependent magnetic flux [4,5,7]. In
the case of low frequency perturbation an adiabatic approach
is valid. A mechanism of transitions between adiabatic levels
is by Zener transition [8]. A localization length in this case is
due to this transition [4]. In the case of high frequency per-
turbation the picture of Zener transition between adiabatic
levels fails [7,9]. Transitions occur between resonant states
which are not nearest neighbors. The problem of dynamical
localization must be considered in the framework of theory
taking into account these resonant transitions.

A purely quantum approach taking into account resonant
one-photon transitions induced by an external field has been
constructed to consider a localization problem for the bubble
model [2]. This method uses a concept of photonic states
[10,2,11] and enables one to map a problem of quantum
dynamics on a one-dimensional (1D) tight-binding model. It
can be instructive to apply this theory to consider the dy-
namical localization in mesoscopic systems, in particular in a
ring, driven by high frequency perturbation. Problems related
to the Anderson localization in a mesoscopic ring have been
considered in [7,9,12] for high frequency perturbation (or
large rate of flux change).

In this paper the dynamical localization of excitation in
the energy space of electrons in a mesoscopic ring in the
presence of a spatially inhomogeneous microwave (uhf) per-
turbation is studied. A model, where a resonant interaction
between the electronic motion in the ring and the microwave
field is of essential importance and leads to chaotic behavior
with diffusive energy excitation in the classical limit under
certain conditions, is proposed. A picture of Zener transition
between adiabatic levels fails in this case [7,9]. Using a
purely quantum approach in the framework of the Floquet
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Hamiltonian provided in Ref. [2] we show that the Floquet
map for the photonic states is related to the 1D Anderson
localization problem.

We shall consider one electron motion in a ring-shaped
conductor of radius R. It is supposed that only a small part of
the ring is exposed to the microwave wave with frequency
v. Thus, an electron of a mass m ‘“feels” the uhf field only at
every passage of this small region A/ in period 2 over the
angle #. This interaction can be considered as a kick by an
effective 8,,(6) potential

0

@(0,t)=€ cos(vt) Z cos(n ). (1)

This interaction (1) is valid when the time of the traversal
of the interaction region is less than the period of the uhf
field: t5;,=Al/vp<2m/v, and AI<R.

Hence the Hamiltonian of the one-dimensional electron
motion in the ring in the presence of the perturbation (1)
reads

h? 92 -
= — = — ——4
H=H,— €V 79021 € cos( vt)n;w cos(né),

J=mR?*. (2

Classical analysis of the system (2) predicts chaotic behavior
in some finite region of phase space with diffusive excitation
of the energy. The Chirikov criterion of chaos, which is very
important for the following quantum analysis, can be ob-
tained from the classical equations of motion for the angular
momentum L = e cosvrZn sinn6 and angle 6=L/J. The dis-
tance between two nearest resonances n and n;=n+1 de-
termined by the resonance condition

n,

L 4

n,-'J—:V (3)

has the form AL=L, —L,=Jv/nn,. The width of a sepa-
ratrix is L .= V2J €. Hence the following condition:

L ax 2n
A"’Z =\2Jen,n/Jv= —VelJ 4)

K=
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determines the condition of chaotic motion. We suppose here
that the resonance number in Eq. (4) can be defined by the
following expression: n=v/w., where w, is a constant fre-
quency corresponding to the current electron motion in the
ring with the Fermi velocity: vp=w R. It is worthwhile to
remark here that the conditions of both high frequency per-
turbation and quasi-constant-frequency for wide scale of the
energy of unperturbed motion

n=v/iw.>1,

wJ/hE>1, (5)

are very important for the following quantum mechanical
consideration.
Following Ref. [2], we consider the Floquet Hamiltonian

Jd . s
.%’=—ih5t—+Ho+sVE.%o+eV. (6)
For €=0 the eigenfunctions of %’0 are given by

Uu: =—

ilg ihjvt
il 2776 e 5

Fou; =(E—jvu;,;, (1)

where E; and e’’? are the eigenvalue and eigenfunctions of
the unperturbed Hamiltonian H. In this case the matrix el-
ements of %% are

A €
<uj!1|.%|ujr,lr>=(El—ﬁjv)ﬁj’j;ﬁl,l:-% E(éj,jl+1+ 5j,j'—1)’
(®

where we use the expression (1/27)3,[d@ '~ 1+1)0=1
for fixed /,1’.

As it follows from (3) and (5) there exists a set of reso-
nant one-photon transitions of width of y(!). These resonant
transitions determine a set of resonant states characterized by
an integer number j with energy E ,O-H’wj for any unper-

turbed state uo; with energy E;. In [2] these states were

called “photonic states.” Following [2] we shall denote the
jth photonic state by |{;,j). It is supposed that

1<y<<v. ©))

This means that these states are not overlapped and not
empty. This condition together with inequalities (5) deter-
mine conditions of validity for photonic states consideration.
To determine the width 7y, an analysis can be carried out in
the framework of a local linear approximation for H, [11]. In
this case the linearized Floquet Hamiltonian (6) with the po-
tential (1) corresponds to a linear kicked rotator [13]. The
analysis for y simply repeats the one carried out for photonic
states width for the bubble model [11] in the linear kicked
rotator approximation. For fixed energy F 1, We shall express

the operator H in the diagonal form, using the following
expansion over the photonic states:

u0,15|”0,1>:§ Willo,j). (10)

Also, the energy E; nearest to the energy of a photonic state
can be considered as E,EE,(j)=E,0+ﬁjv+ A;, where A; is
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the detuning from exact resonance [2]. Using (8) and (10),
we obtain the following expression:

(it AU+ 5 Wyar o) =Eg;. (1)

For small € we can put that E=F It €(x/2). So, finally
we obtain the equation for ¢

2
Y1t t+ ;Aj‘/’j:)(llfj: (12)

where |x|<1.

Let us now pass to the detuning. It cannot be larger by
modules than one half of the unperturbed level spacing
8;=Ey+1—E;), otherwise it belongs to another level
with /+1. We can define normalized detuning o;=A4;/8;. It
follows from the quantum resonance conditions that
0;={VvJ/fj} g, Where {---}g,. means fractional part.
These numbers can be considered quasirandomly distributed
in the interval [—0.5,0.5] for j<(wJ/A) and vJ/hE>1,
where a>1. The unperturbed energy level spacing is deter-
mined approximately by 8;=(%/J)vpR~%w. and is inde-
pendent of j in the framework of the considered approxima-
tion. Here the spectrum is taken to be equidistant for
simplicity, which is quite reasonable for the big orbital num-
bers [~mvpR/h= wJ/%. In this case we obtain from (12)

Vit i+ Wi =xy;,

2ho,

(13)

Equation (13) corresponds to the one-dimensional Ander-
son localization problem with a known exponentially local-
ized solution for the eigenfunctions ¢;. This problem has
been considered both analytically and numerically [14-16].
In the both cases of small (A<1) and large (y<<A) “disor-
der” (SD and LD, respectively) the localization length £ was
found for y=1 and j—o [15,16]:

2

gSD:ﬁs X>A

&= (14)

§LD=1n(A/2)-‘1, X<A.

Unlike [14-16], the number of energy levels j, where the
localization takes place, is restricted by the resonant condi-
tions (3) with n>1. This means that j<j ..=wJ/h. The
rate of decay is measured by the Lyapunov exponent
(§jmax)*l, and is evaluated numerically by the transfer ma-

trix method [14]. The numerical analysis of ¢ indicates a
localization process except in the case of small disorder,
when A<<1. In this case the localization length exceeds the
energy range, where the photonic states are £>j ., for any
eigenvalues x<<1 and jp,,~10%. An exponential fitting of
the eigenfunctions ¢; is meaningful when the following con-
dition holds: 1<<&<€j ... This regime is found as well for
“moderate disorder,” when y<<A~1 and £~ &gp . It follows
from (4) and (14) that the condition of the validity of the
solution for localization length reads
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1<

- -1 4
]max_§(£) n (15)

& 9\ & K*

In conclusion, the constructed model with Hamiltonian
(2) exhibits a localization in energy space, which is described
by the Anderson model. This result is obtained purely by the
quantum approach of Ref. [2], which is valid here for some
restriction determined by the expressions (5), (9), and (15).
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For describing an experimental realization it may be impor-
tant to take impurities in the ring into account. An influence
of the impurities on the localization length can be studied in
the framework of the Hamiltonian (2) as well.

I thank N. Brenner and S. Fishman for helpful discussions
and the possibility of reading their paper before its publica-
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and Technology of Israel.
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